We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To date, all human studies of mass-casualty decontamination for chemical incidents have relied on the collection and analysis of external samples, including skin and hair, to determine decontamination efficacy. The removal of a simulant contaminant from the surface of the body with the assumption that this translates to reduced systemic exposure and reduced risk of secondary contamination has been the main outcome measure of these studies. Some studies have investigated systemic exposure through urinary levels of simulant metabolites. The data obtained in these studies were confounded by high background concentrations from dietary sources. The unmetabolized simulants have never been analyzed in urine for the purposes of decontamination efficacy assessment.
Study Objective:
Urinary simulant analysis could obviate the need to collect skin or hair samples during decontamination trials and provide a better estimate of both decontamination efficacy and systemic exposure. The study objective therefore was to determine whether gross skin contamination as part of a decontamination study would yield urine levels of simulants sufficient to evaluate systemic availability free from dietary confounders.
Methods:
In this study, a gas chromatography-tandem mass spectrometry method was developed for the analysis of two chemical simulants, methyl salicylate (MeS) and benzyl salicylate (BeS), in urine. An extraction and sample clean-up method was validated, enabling quantitation of these simulants in urine. The method was then applied to urine collected over a 24-hour period following simulant application to the skin of volunteers.
Results:
Both MeS and BeS were present in all urine samples and were significantly increased in all post-application samples. The MeS levels peaked one hour after skin application. The remaining urinary levels were variable, possibly due to additional MeS exposures such as inhalation. In contrast, the urinary excretion pattern for BeS was more typical for urinary excretion curves, increasing clearly above baseline from four hours post-dose and peaking between 12.5 and 21 hours, a pattern consistent with dermal absorption and rapid excretion.
Conclusion:
The authors propose BeS is a useful simulant for use in decontamination studies and that its measurement in urine can be used to model systemic exposures following skin application and therefore likely health consequences.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.