Previous work has shown that focused ion beam (FIB) nanomachining can be effectively utilized for the cross-sectional analysis of polymers such as core-shell solid microspheres and hollow latex nanospheres. While these studies have clearly demonstrated the precise location selection and nanomachining control provided by the FIB technique, the samples studied consisted of only a single polymer. In this work, FIB is used to investigate bicomponent polymeric fiber systems by taking advantage of the component's differing sputter rates that result from their differing physical properties. An approach for cross sectioning and thus revealing the cross-sectional morphology of the polymeric components in a bicomponent polymeric fiber with the island-in-the-sea (I/S) structure is presented. The two I/S fibers investigated were fabricated using the melt spinning process and are composed of bicomponent combinations of linear low density polyethylene (LLDPE) and nylon 6 (PA6) or polylactic acid (PLA) and an EastONETM proprietary polymer. Topographical contrast as a result of differential sputtering and the high surface specificity and high signal-to-noise obtained using FIB-induced secondary electron imaging is shown to provide a useful approach for the rapid characterization of the cross-sectional morphology of bicomponent polymeric fibers without the necessity of staining or other sample preparation.