We address in this article the computation of the convex solutions of the Dirichletproblem for the real elliptic Monge − Ampère equation for general convex domains in twodimensions. The method we discuss combines a least-squares formulation with a relaxationmethod. This approach leads to a sequence of Poisson − Dirichlet problems and anothersequence of low dimensional algebraic eigenvalue problems of a new type. Mixed finiteelement approximations with a smoothing procedure are used for the computer implementationof our least-squares/relaxation methodology. Domains with curved boundaries are easilyaccommodated. Numerical experiments show the convergence of the computed solutions totheir continuous counterparts when such solutions exist. On the other hand, when classicalsolutions do not exist, our methodology produces solutions in a least-squares sense.