This paper describes an early-stage research and experiments exploring methods of co-cultivation of the fungal strain Ganoderma lucidum and the bacterial strain Sporosarcina pasteurii within the field of architecture. Co-cultivating these species within a bio-based compound, forming a living material, shows that the binding abilities of both microbial partners can be harnessed through multistep production techniques. As the mycelial network of the fungus spreads through the inoculated wood substrate, bacterial cells disperse and multiply on this same network and release the enzyme urease throughout the now-forming compound bound by the fungus. The enzyme is one of the key actors in the biocementation process, which is activated with the addition of a calcium source to the material. Calcium carbonate minerals form and attach on the hyphae, as well as in between the network, inside the wood sawdust pieces and around void spaces within the composite. While additional data collection is required, the current state of this research suggests that properties of both living materials can be expanded, for example, fire resistance and compressive strength compared to traditional mycelium-based composites, as well as the increased ability of the bacteria to homogeneously distribute and exist in unfavorable environments compared to mono-cultured bacterial communities.