A key element of sustainable land management is maintenance of soil quality. We designed this study to compare the impact of land use and landform on soil quality attributes that vary at the plot level, or fine scale, using a framework that can be applied in many settings. The research site for this case study was a small catchment in the hillsides of central Honduras where farmers manage a variety of land uses. Fourteen biological, physical, and chemical attributes that affect the ability of a soil to perform key functions related to supporting plant growth were measured and scored. Samples from 20 sites represented different combinations of landform and land use. Quantitative analysis revealed that land use had a greater influence on soil quality than did landform. Soil organic carbon, texture, A horizon thickness, pH, structure, and bulk density accounted for the greatest differences among landform and land use units. Using weighted and additive combinations of the scored attributes to approximate soil quality functions, irrigated agriculture was judged to be the least sustainable land use, and coffee groves and forest patches were the most sustainable. The final soil quality values were sensitive to the weights and attributes chosen for a given function, and additional testing and evaluation were recommended.