Site occupancy models, accounting for imperfect detection and the influence of anthropogenic and ecological covariates, can indicate the status of species populations. They may thus be useful for exploring the suitability of landscapes such as biological corridors, to ensure population dispersal and connectivity. Using occupancy probability models of its principal prey species, we make inferences on landscape connectivity for the movement of the tiger Panthera tigris between protected areas in Bhutan. We used camera-trap data to assess the probability of site occupancy (Ψ) of the sambar Rusa unicolor, wild boar Sus scrofa and barking deer Muntiacus muntjak in biological corridor no. 8, which connects two national parks in central Bhutan. At least one prey species was recorded at 17 out of 26 trapping locations. The probability of site occupancy was highest for the barking deer (Ψ = 0.52 ± SE 0.09) followed by sambar (Ψ = 0.49 ± SE 0.03) and wild boar (Ψ = 0.45 ± SE 0.07). All three species had higher occupancy probability at lower altitudes. Sambar occupancy was greater farther from settlements and on steeper and/or south-facing slopes. Barking deer also had higher occupancy on south-facing slopes, and wild boar occurred mainly close to rivers. Our findings suggest that this biological corridor could facilitate dispersal of tigers. Protecting prey species, and minimizing anthropogenic disturbance and habitat fragmentation, are vital for tiger dispersal and thus functional connectivity amongst populations in this area.