Based on the characteristics of high-frequency swing during fast swimming of fish, this paper designs a bionic fish-driven joint based on electromagnetic drive to achieve high-frequency swing. Aiming at the characteristic parameters of high-frequency swing control, the Fourier transform is used to separate the characteristic parameters and then compared the driving accuracy of the joints in open-loop and closed-loop. The comparison results show that the closed-loop control is performed after Fourier transform. Under the same driving conditions, the closed-loop control method can improve the joint driving accuracy. Then a bionic fish robot composed of three joints is designed according to this method and Kane method is used to model it dynamically and combined with the central pattern generator control method to complete model simulation and related experiments. The experimental results show that the bionic fish prototype can swim faster under high-frequency swing under electromagnetically driven joints.