We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The main aim was to examine the effect of bit depth on computed tomography (CT) number for high-density materials. Analysis of the CT number for high-density materials using 16-bit scanners will extend the CT scale that currently exists for 12-bit scanners and thus will be beneficial for use in CT–electron density (ED) curve in radiotherapy treatment planning system (TPS). Implementation of this extended CT scale will compensate for tissue heterogeneity during CT–ED conversion in treatment planning.
Materials and methods
An in-house built phantom with 10 different metal samples was scanned using 80, 100 and 120 kVp in two different CT scanners. A region of interest was set at the centre of the material and the mean CT numbers together with data deviation were determined. Dosimetry calculation was performed by applying a direct anterior beam on 12-bit, 12-bit extended and 16-bit.
Results
High-density materials (>4·34 g cm−3) in 16-bit depth provide disparities up to 44% compared to Siemens’ 12-bit extended. Influence of tube voltage showed a significant difference (p<0·05) in both bit depth and CT number of the gold and amalgam saturated in 16-bit depth. A 120 kVp energy illustrated a low variation on CT number for different scanners, but dosimetry calculation showed significant disparities at the metal interface in 12-bit, 12-bit extended and 16-bit.
Findings
High-density materials require 16-bit scanners to obtain CT number to be implemented in treatment planning in radiotherapy. This also suggests that proper tube voltage together with correct CT–ED resulted in accurate TPS algorithm calculation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.