In this paper we prove that a pairwise Hausdorff bitopological space is quasi-metrizable if and only if for each point x ∈ X and for i, j = 1,2, i ≠ j, one can assign nbd bases { S(n, i; x) | n = 1, 2,… } such that (i) y ∉ S (n − 1, i; x) imples S(n, i; x) ∩ S (n, j; y) = φ, (ii) y ∈ S (n, i; x) implies S (n, i; y) ⊂ S(n − 1, i; x). We derive two further results from this.