We study the growth of a population of bacteria in a dynamical hostile environment corresponding to the immune system of the colonized organism. The immune cells evolve as subcritical open clusters of oriented percolation and are perpetually reinforced by an immigration process, while the bacteria try to grow as a supercritical oriented percolation in the remaining empty space. We prove that the population of bacteria grows linearly when it survives. From this perspective, we build general tools to study dependent oriented percolation models issued from renormalization processes.