We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Gas turbines play a preeminent role in the stationary power generation marketplace and are expected to remain a critical part of the market mix for the foreseeable future. Alternative technologies compete with gas turbines in certain size classes, but at power generation levels above 5 MW, gas turbines offer the most attractive option due to their relatively low capital, operating, and maintenance costs. The configurations for these systems involve high efficiencies as well. These engines are being looked to by the US Department of Energy and the major OEMs for clean power production, especially considering the use of renewable fuels. As a result, the market will continue to demand gas turbines for the foreseeable future.
Gas turbine engines for aircraft applications are complex machines requiring advanced technology drawing from the disciplines of fluid mechanics, heat transfer, combustion, materials science, mechanical design, and manufacturing engineering. In the very early days of gas turbines, the combustor module was frequently the most challenging. Although the capability of the industry to design combustors has greatly improved, challenges still remain in the design of the combustor, and further innovations are required to reduce carbon emissions. Many companies in the aviation industry committed to a pathway to carbon-neutral growth and aspire to carbon-free future in 2008. Additionally, airframers have aggressive goals to reduce carbon dioxide emissions by 50% by 2050 compared to those in 2005. Achieving these goals require technology advancements in all aspects of the aviation industry including airframers, engine manufactures fuel providers, and all the associated supply chains. The focus of this chapter is the influence of one module of the aircraft engine – the combustor.
Gas turbines play a preeminent role in the stationary power generation marketplace and are expected to remain a critical part of the market mix for the foreseeable future. Alternative technologies compete with gas turbines in certain size classes, but at power generation levels above 5 MW, gas turbines offer the most attractive option due to their relatively low capital, operating, and maintenance costs. The configurations for these systems involve high efficiencies as well. These engines are being looked to by the US Department of Energy and the major OEMs for clean power production, especially considering the use of renewable fuels. As a result, the market will continue to demand gas turbines for the foreseeable future.
Gas turbine engines for aircraft applications are complex machines requiring advanced technology drawing from the disciplines of fluid mechanics, heat transfer, combustion, materials science, mechanical design, and manufacturing engineering. In the very early days of gas turbines, the combustor module was frequently the most challenging. Although the capability of the industry to design combustors has greatly improved, challenges still remain in the design of the combustor, and further innovations are required to reduce carbon emissions. Many companies in the aviation industry committed to a pathway to carbon-neutral growth and aspire to carbon-free future in 2008. Additionally, airframers have aggressive goals to reduce carbon dioxide emissions by 50% by 2050 compared to those in 2005. Achieving these goals require technology advancements in all aspects of the aviation industry including airframers, engine manufactures fuel providers, and all the associated supply chains. The focus of this chapter is the influence of one module of the aircraft engine – the combustor.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.