The dynamic charge density of KZnB3O6, which contains edge-sharing BO4 units, has been characterized using laboratory and synchrotron X-ray diffraction techniques. The experimental electron density distribution (EDD) was constructed using the maximum-entropy method (MEM) from single crystal diffraction data obtained at 81 and 298 K. Additionally, MEM-based pattern fitting (MPF) method was employed to refine the synchrotron powder diffraction data obtained at 100 K. Both the room-temperature single crystal diffraction data and the cryogenic synchrotron powder diffraction data reveal an intriguing phenomenon: the edge-shared B2O2 ring exhibits a significant charge density accumulation between the O atoms. Further analysis of high-quality single crystal diffraction data collected at 81 K, with both high resolution and large signal-to-noise ratio, reveals no direct O–O bonding within the B2O2 ring. The experimental EDD of KZnB3O6 obtained aligns with the results obtained from ab-initio calculations. Our work underscores the importance of obtaining high-quality experimental data to accurately determine EDDs.