We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove existence and uniqueness for the inverse-first-passage time problem for soft-killed Brownian motion using rather elementary methods relying on basic results from probability theory only. We completely avoid the relation to a suitable partial differential equation via a suitable Feynman–Kac representation, which was previously one of the main tools.
For a multivariate random walk with independent and identically distributed jumps satisfying the Cramér moment condition and having mean vector with at least one negative component, we derive the exact asymptotics of the probability of ever hitting the positive orthant that is being translated to infinity along a fixed vector with positive components. This problem is motivated by and extends results of Avram et al. (2008) on a two-dimensional risk process. Our approach combines the large deviation techniques from a series of papers by Borovkov and Mogulskii from around 2000 with new auxiliary constructions, enabling us to extend their results on hitting remote sets with smooth boundaries to the case of boundaries with a ‘corner’ at the ‘most probable hitting point’. We also discuss how our results can be extended to the case of more general target sets.
A simple approximation to the probability of crossing a U-shaped boundary by a Brownian motion is given. The larger the second derivative of the curve at a minimum point, the higher the accuracy of the approximation. The result is also extended to a class of continuous Gaussian processes with definite properties. Numerical examples are given.
Suppose a Poisson process is observed on the unit interval. The scan statistic is defined as the maximum number of events observed as a window of fixed width is moved across the interval, and the distribution under homogeneity has been widely studied. Frequently, we may not wish to specify the window width in advance but to consider scan statistics with varying window widths. We propose a modification of the scan statistic based on a likelihood ratio criterion. This leads to a boundary-crossing problem for a two-dimensional random field, which we approximate using a large-deviation scaling under homogeneity. Similar results are obtained for Poisson processes observed in two dimensions. Numerical computations and simulations are used to illustrate the accuracy of the approximations.
We shall use three basic properties of Brownian motion to derive in an elegant and non-computational way the probability that standard Brownian motion, starting from 0, will ever cross the halflines t → αt + β or t → γt + δ where γ, δ < 0 < α, β.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.