We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Attention deficit hyperactivity disorder (ADHD) is a common disorder in childhood, which progresses to adulthood in about a fifth of cases. For various reasons, adult ADHD is a disorder not comprehensively assessed by psychiatrists, not least because the biological underpinnings are only recently being unmasked.
Aims
This selective review targets psychiatrists without a background in neuroscience and aims to describe the neurobiological basis of ADHD.
Methods
In total, 40 articles from a PubMed search were selected for inclusion based on sample population and methodology (neuroimaging studies). Studies focussing on adult participants were selected preferentially for inclusion. Seminal articles relevant to childhood populations were included for the purpose of understanding general concepts around ADHD.
Results
The neuropathology of ADHD is not rooted in a single anatomical area, but in multiple parallel and intersecting pathways, which have demonstrated impaired functional connectivity in ADHD brains. Dysfunction in executive function, reward processing, attention networks and default networks play major roles in the neuropathology of this condition. Biological findings vary between individuals, with some showing greater dysfunction at cortical levels and others at subcortical levels, which is in keeping with its clinical heterogeneity.
Conclusion
Improved symptomatology in adulthood is linked to a number of factors. Maturation of the prefrontal cortex in early adulthood contributes to symptom attenuation in many cases, meaning that individuals with cortical dysfunction are more likely to grow out of symptoms, whereas individuals with subcortical dysfunction may be less likely to do so. There is emerging evidence for a similar but distinct disorder arising de novo in adulthood.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.