The effect of canopy species dominance on understorey light availability in secondary forests was examined for Pentaclethra macroloba and Goethalsia meiantha, two common tree species with contrasting canopy architecture at La Selva Biological Station in the Atlantic lowlands of Costa Rica. In each of six 12- to 16-year-old successional stands dominated by one of these species, relative abundance and basal area of the focal species were determined within a 20 m × 50 m plot. Light availability at 1 m height was measured within each plot using a Licor-2000 Plant Canopy Analyzer at 27 locations and by analysing hemispherical photographs taken at 10 locations. Across stands, mean LAI values were significantly negatively correlated with canopy openness. Understorey microsites beneath Pentaclethra had significantly higher light availability than microsites beneath Goethalsia. Across stands, however, light availability was not correlated with either total basal area or stem density of trees ≥10 cm DBH. These results indicate that basal area and stem density of trees in the upper levels of the forest canopy are poor predictors of light penetration to the understorey. One hypothesis suggested here is that dense subcanopy and understorey vegetation in tropical secondary forests can strongly influence understorey light levels. Alternatively, light transmittance characteristics of the upper forest canopy may be influenced by species-specific differences in canopy architecture or foliage density that vary independently from tree diameter and density.