Electrochemical reduction of CO2 to formic acid is a good strategy to address both environmental and energy issues. However, some drawbacks including low activity, selectivity, and stability of electrocatalysts must be overcome. We propose a method for tailoring Bi2O2CO3-coated carbon fiber electrodes with higher selectivity and stability for electrochemical CO2 reduction to formic acid. We evaluated the effect of Bi2O2CO3 and Nafion contents on the electrocatalysts performance for CO2 reduction reaction (CO2RR). All electrodes produced only HCOO− in the liquid phase with a maximum faradaic efficiency (FE) of 69%. The electrocatalysts were stable under 24 h of continuous CO2RR operation. The FE increased with the increasing electrolyte concentration and cation radius size, which indicates that the anion stabilization in solution is critical for adequate formate generation. The CO2RR mechanism was proposed with basis on the literature. The structural carbonate of Bi2O2CO3 acts as an intermediate species in the formate production from CO2.