We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Dosimetric advantages of volumetric-modulated arc therapy (VMAT) over three-dimensional conformal radiotherapy (3D-CRT) are not established in a head-on comparison of a uniform group of locally advanced carcinoma of the cervix (LACC). Therefore, we conducted a dosimetric comparison of these two techniques in LACC patients.
Materials and methods:
Computed tomography (CT) data of histologically proven de novo LACC, including Stage IIB–IIIB and earlier stages deemed inoperable, were included in this prospective observational dosimetric study. Planning was initially done by 3D-CRT technique (dose of 45–50·4 Gy @ 1·8–2 Gy/# was used in the actual treatment), followed by VMAT planning and appropriate dosimetric comparisons were done in 39 cases.
Results:
For planning target volume coverage, D95, D98 and D100 (p < 0·0001 for all parameters) and V95 and V100 (p = 0·002 and <0·0001, respectively) were significantly improved with VMAT. The conformity index (CI) was significantly better with VMAT (p = 0·03), while 3D-CRT had a significantly better homogeneity index (HI)(p = 0·003). Dose to the urinary bladder was significantly reduced with VMAT compared to 3D-CRT for V20–V50, except V10. The doses to the rectum and abdominal cavity were significantly reduced with VMAT compared to 3D-CRT plans for all parameters (V10–V50). The number of organs at risks (OARs) for which constraints were met was higher with VMAT plans than with 3D-CRT plans, with at least four out of the five OARs protected in 46·1 versus 5·1% and all constraints achieved in 15·4% versus none.
Conclusion:
We conclude that in dosimetric terms, VMAT is superior to 3D-CRT for LACC.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.