We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Avoiding unnecessary myocardial damage has been at the forefront of cardiac surgery since its early days. The ability to arrest and immobilize the heart and revive it again without loss of function has facilitated more and more complex surgeries. Effective myocardial protection, particularly for the duration of aortic cross clamping, involves multimodal strategies consisting of temperature management, cardioplegic solutions delivered by various routes as well as non-cardioplegic techniques like ischemic preconditioning through intermittent cross-clamping or pharmacological protection.
This chapter describes the standard equipment and monitoring components of the cardiopulmonary bypass (CPB) machine and extracorporeal circuit as well as additional equipment such as the suckers used to scavenge blood from the operative field, cardioplegia delivery systems and hemofilters. The tubing in the CPB circuit interconnects all of the main components of the circuit. The arterial cannula is used to connect the arterial limb of the CPB circuit to the patient and so deliver oxygenated blood from the heart-lung machine directly into the patient's arterial system. Venous cannulation for CPB allows deoxygenated blood to be drained from the patient into the extracorporeal circuit. The Terumo CDI 500 in-line blood gas analyzer is an optical fluorescence and reflectance based in-line system that continuously monitors 11 critical blood gas parameters with laboratory quality accuracy. Non-invasive simultaneous arterial and venous saturation monitors are also available for use during CPB.
This chapter reviews the rationale for the use of cardioplegia, techniques of administration, components of different cardioplegia solutions and applications of cardioplegia in different surgical interventions. Myocardial damage can be detected by electrocardiography, echocardiography, radioactive imaging studies and cardiac magnetic resonance imaging. The clinical manifestations of myocardial damage may present as low cardiac output syndrome due to impaired myocardial contractility, dysrhythmias, decreased ventricular compliance or segmental myocardial wall motion abnormalities. The goal of myocardial protection with cardioplegia is to prevent myocardial injury during the periods of intentional ischemia that are required to perform cardiac operations. Cardioplegia delivery systems generally comprise an infusion system with in-line pressure monitors, a cardioplegic heat exchanger for cold and warm perfusion, and cannulae for antegrade and retrograde delivery. Crystalloid cardioplegia solutions are usually delivered at 4°C, cold blood solutions at 10-16°C and warm blood solutions at 37°C.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.