Using the whole-cell patch clamp technique, we have examined the voltage-gated currents present in adult chicken cone cells. When calcium and calcium-gated currents are blocked, hyperpolarizing voltage steps elicit slowly increasing inward currents as has been shown for photoreceptors in other species. Unlike the case for other species, chicken cones appear to lack the inward-rectifying cationic current Ih that contributes to the shaping of the photovoltage. Instead of Ih, these cones possess an anionic inward-rectifying current that in kinetics, activation range and probably function is remarkably similar to Ih. This anion channel is unusual in that both nitrate and acetate are more permeant than chloride ions.