Protease inhibitors cause mortality in a range of insects, and transgenic plants expressing protease inhibitors have been protected against pest attack, particularly internal feeders that are not amenable to control by conventional means. A study of luminal proteases in Conogethes punctiferalis Guenée was performed to identify potential targets for proteinaceous biopesticides, such as protease inhibitors. The midgut protease profile of the gut lumen from C. punctiferalis was studied to determine the conditions for optimal protein hydrolysis. Optimum conditions for peptidase activity were found to be in 50 mm Tris-HCl, pH 10 containing 20 mm CaCl2; incubation for 30 min at 40°C. Four synthetic substrates, i.e. benzoyl-arg-p-nitroanilide, benzoyl-tyr-p-nitroanilide, succinyl-ala-ala-pro-leu-p-nitroanilide (SAAPLpNA) and leu-p-nitroanilide were hydrolysed by C. punctiferalis gut proteases in Tris-HCl buffer pH 10. Trypsin and elastase-like chymotrypsin were the prominent digestive proteases, and age-related modulation of midgut proteases existed for trypsin, chymotrypsin, elastase-like chymotrypsin and leucine aminopeptidase. Serine protease inhibitors such as aprotinin, soybean trypsin inhibitor and phenylmethanesulfonyl fluoride inhibited peptidase activity. Some metal ions such as Ca2+, Mg2+, Pb2+ and Co2+ enhanced BApNA-ase activity whereas others like Mn2+, Zn2+, Cu2+, Fe2+ and Hg2+ were inhibitory at 6 mm concentration. Trypsin and elastase-like chymotrypsin were significantly inhibited by 94% and 29%, respectively, by aprotinin (150 nm) under in vitro conditions. A possible incorporation of protease inhibitors into transgenic plants is discussed.