An important attribute for soil use is clay content, because it affects the water-holding capacity and hydraulic properties of a soil. Soil surveys are time-consuming, labour-intensive and costly, while geophysical methods, such as Electromagnetic Induction (EMI) and Ground Penetrating Radar (GPR), offer a non-invasive and non-destructive approach to mapping soil features. The objective of this paper is to assess the spatial relationship between clay content and geophysical data. The EMI and GPR data and soil cores were collected and analysed in a field of about 3 ha size in Rutigliano, Bari, in SE Italy. The EMI data and clay contents were interpolated using ordinary cokriging. The GPR data were pre-processed and the envelope of the filtered GPR data was used to produce 3Dmaps of the kriged estimates. The correlation with clay content was large and positive for EMI, whereas it was negative for the GPR measurement. In this work, a combination of geostatistical and statistical analysis has shown a significant correlation between the EMI and GPR observations. Estimation of the mathematical function relating these two groups of variables requires a multivariate approach of non-stationary geostatistics.