We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To enhance enrollment into randomized clinical trials (RCTs), we proposed electronic health record-based clinical decision support for patient–clinician shared decision-making about care and RCT enrollment, based on “mathematical equipoise.”
Objectives:
As an example, we created the Knee Osteoarthritis Mathematical Equipoise Tool (KOMET) to determine the presence of patient-specific equipoise between treatments for the choice between total knee replacement (TKR) and nonsurgical treatment of advanced knee osteoarthritis.
Methods:
With input from patients and clinicians about important pain and physical function treatment outcomes, we created a database from non-RCT sources of knee osteoarthritis outcomes. We then developed multivariable linear regression models that predict 1-year individual-patient knee pain and physical function outcomes for TKR and for nonsurgical treatment. These predictions allowed detecting mathematical equipoise between these two options for patients eligible for TKR. Decision support software was developed to graphically illustrate, for a given patient, the degree of overlap of pain and functional outcomes between the treatments and was pilot tested for usability, responsiveness, and as support for shared decision-making.
Results:
The KOMET predictive regression model for knee pain had four patient-specific variables, and an r2 value of 0.32, and the model for physical functioning included six patient-specific variables, and an r2 of 0.34. These models were incorporated into prototype KOMET decision support software and pilot tested in clinics, and were generally well received.
Conclusions:
Use of predictive models and mathematical equipoise may help discern patient-specific equipoise to support shared decision-making for selecting between alternative treatments and considering enrollment into an RCT.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.