This paper presents a comprehensive study of the forward and inverse kinematics of a six-degrees-of-freedom (DoF) spatial manipulator with a novel architecture. Developed by Systemantics India Pvt. Ltd., Bangalore, and designated as the H6A (i.e., Hybrid 6-Axis), this manipulator consists of two arm-like branches, which are attached to a rigid waist at the proximal end and are coupled together via a wrist assembly at the other. Kinematics of the manipulator is challenging due to the presence of two multi-DoF passive joints: a spherical joint in the right arm and a universal in the left. The forward kinematic problem has eight solutions, which are derived analytically in the closed form. The inverse kinematic problem leads to $160$ solutions and involves the derivation of a $40$-degree polynomial equation, whose coefficients are obtained as closed-form symbolic expressions of the pose parameters of the end-effector, thus ensuring the generality of the results over all possible inputs. Furthermore, the analyses performed lead naturally to the conditions for various singularities involved, including certain non-trivial architecture singularities. The results are illustrated via numerical examples which are validated extensively.