We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Unlike in Chapter 5, this project aims at finding a real mass density distribution of a hydrogen star of given mass. For that purpose an equilibrium condition for the gravitational and pressure-induced forces acting on a mass element is utilised. Using the integral form of Gauss’s law and the equation of state, we establish an integro-differential equation describing the mass density distribution. To numerically solve the integro-differential equation, we adapt the Adams–Bashforth method and implement a linear extrapolation based on known data points. This approach involves modelling the star as a gas under pressure using an exponential form for the equation of state, which helps in avoiding gravitational collapse. The equation of state is derived based on density functional theory data. We also discuss the constraints of this model and the significance of the parameters within it. The chapter concludes by suggesting potential numerical experiments to examine the influence of these parameters and their physical interpretation. This analysis aims to provide a more comprehensive understanding of stellar structure and the behaviour of mass density distribution within stars.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.