The paper is concerned with the final state and severity of a number of SIR epidemic models in finite populations. Two different classes of models are considered, namely the classical SIR Markovian models and the collective models introduced recently by the authors. First, by applying a simple martingale argument, it is shown that in both cases, there exists a common algebraic structure underlying the exact law of the final state and severity. Then, a unified approach to these statistics is developed by exploiting the theory of Abel-Gontcharoff pseudopolynomials (presented in a preceding paper).