We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The expansion of electronic health record (EHR) data networks over the last two decades has significantly improved the accessibility and processes around data sharing. However, there lies a gap in meeting the needs of Clinical and Translational Science Award (CTSA) hubs, particularly related to real-world data (RWD) and real-world evidence (RWE).
Methods:
We adopted a mixed-methods approach to construct a comprehensive needs assessment that included: (1) A Landscape Context analysis to understand the competitive environment; and (2) Customer Discovery to identify stakeholders and the value proposition related to EHR data networks. Methods included surveys, interviews, and a focus group.
Results:
Thirty-two CTSA institutions contributed data for analysis. Fifty-four interviews and one focus group were conducted. The synthesis of our findings pivots around five emergent themes: (1) CTSA segmentation needs vary according to resources; (2) Team science is key for success; (3) Quality of data generates trust in the network; (4) Capacity building is defined differently by researcher career stage and CTSA existing resources; and (5) Researchers’ unmet needs.
Conclusions:
Based on the results, EHR data networks like ENACT that would like to meet the expectations of academic research centers within the CTSA consortium need to consider filling the gaps identified by our study: foster team science, improve workforce capacity, achieve data governance trust and efficiency of operation, and aid Learning Health Systems with validating, applying, and scaling the evidence to support quality improvement and high-value care. These findings align with the NIH NCATS Strategic Plan for Data Science.
Electronic health record (EHR) data have many quality problems that may affect the outcome of research results and decision support systems. Many methods have been used to evaluate EHR data quality. However, there has yet to be a consensus on the best practice. We used a rule-based approach to assess the variability of EHR data quality across multiple healthcare systems.
Methods:
To quantify data quality concerns across healthcare systems in a PCORnet Clinical Research Network, we used a previously tested rule-based framework tailored to the PCORnet Common Data Model to perform data quality assessment at 13 clinical sites across eight states. Results were compared with the current PCORnet data curation process to explore the differences between both methods. Additional analyses of testosterone therapy prescribing were used to explore clinical care variability and quality.
Results:
The framework detected discrepancies across sites, revealing evident data quality variability between sites. The detailed requirements encoded the rules captured additional data errors with a specificity that aids in remediation of technical errors compared to the current PCORnet data curation process. Other rules designed to detect logical and clinical inconsistencies may also support clinical care variability and quality programs.
Conclusion:
Rule-based EHR data quality methods quantify significant discrepancies across all sites. Medication and laboratory sources are causes of data errors.
Electronic health record (EHR) data have emerged as an important resource for population health and clinical research. There have been significant efforts to leverage EHR data for research; however, given data security concerns and the complexity of the data, EHR data are frequently difficult to access and use for clinical studies. We describe the development of a Clinical Research Datamart (CRDM) that was developed to provide well-curated and easily accessible EHR data to Duke University investigators.
Methods:
The CRDM was designed to (1) contain most of the patient-level data elements needed for research studies; (2) be directly accessible by individuals conducting statistical analyses (including Biostatistics, Epidemiology, and Research Design (BERD) core members); (3) be queried via a code-based system to promote reproducibility and consistency across studies; and (4) utilize a secure protected analytic workspace in which sensitive EHR data can be stored and analyzed. The CRDM utilizes data transformed for the PCORnet data network, and was augmented with additional data tables containing site-specific data elements to provide additional contextual information.
Results:
We provide descriptions of ideal use cases and discuss dissemination and evaluation methods, including future work to expand the user base and track the use and impact of this data resource.
Conclusions:
The CRDM utilizes resources developed as part of the Clinical and Translational Science Awards (CTSAs) program and could be replicated by other institutions with CTSAs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.