We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
from
Part Three
-
Sharp Constants in Lieb–Thirring Inequalities
Rupert L. Frank, Ludwig-Maximilians-Universität München,Ari Laptev, Imperial College of Science, Technology and Medicine, London,Timo Weidl, Universität Stuttgart
We discuss the problem of finding the optimal constant in Lieb–Thirring and Cwikel–Lieb–Rozenblum inequalities, thereby introducing, in particular, the semiclassical constant and the one-particle constants, which appear in the Lieb–Thirring conjecture. We discuss Keller's problem of minimizing the lowest eigenvalue of a Schrödinger operator among all potentials with a given L^p norm. We present the Aizenman–Lieb monotonicity argument, as well as semiexplicit computations for eigenvalues of the harmonic oscillator (including the counterexample of Helffer and Robert) and the Pöschl–Teller potential. In the one-dimensional case, we present the optimal bounds due to Hundertmark–Lieb–Thomas and Gardner–Greene–Kruskal–Miura. We provide two proofs of the latter bound, namely, the original one based on trace formulas and a more recent one by Benguria and Loss based on the commutation method.
from
Part Three
-
Sharp Constants in Lieb–Thirring Inequalities
Rupert L. Frank, Ludwig-Maximilians-Universität München,Ari Laptev, Imperial College of Science, Technology and Medicine, London,Timo Weidl, Universität Stuttgart
We prove Lieb–Thirring inequalities with optimal, semiclassical constant in higher dimensions by following the Laptev–Weidl approach of "lifting in dimension." We introduce Schrödinger operators with matrix-valued potentials and show how Lieb–Thirring inequalities with semiclassical constants for such operators in one dimension imply the Lieb–Thirring inequality with semiclassical constant in higher dimensions. Subsequently, we prove a sharp Lieb–Thirring inequality in one dimension with exponent 3/2 for Schrödinger operators with matrix-valued potentials. We give a complete proof using the commutation method by Benguria and Loss. We also sketch the original proof by Laptev and Weidl based on trace formula for Schrödinger operators with matrix-valued potentials.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.