We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let G be a compact quantum group. We show that given a G-equivariant $\textrm {C}^*$-correspondence E, the Pimsner algebra $\mathcal {O}_E$ can be naturally made into a G-$\textrm {C}^*$-algebra. We also provide sufficient conditions under which it is guaranteed that a G-action on the Pimsner algebra $\mathcal {O}_E$ arises in this way, in a suitable precise sense. When G is of Kac type, a KMS state on the Pimsner algebra, arising from a quasi-free dynamics, is G-equivariant if and only if the tracial state obtained from restricting it to the coefficient algebra is G-equivariant, under a natural condition. We apply these results to the situation when the $\textrm {C}^*$-correspondence is obtained from a finite, directed graph and draw various conclusions on the quantum automorphism groups of such graphs, both in the sense of Banica and Bichon.
One of the main aims of this paper is to give a large class of strongly solid compact quantum groups. We do this by using quantum Markov semigroups and noncommutative Riesz transforms. We introduce a property for quantum Markov semigroups of central multipliers on a compact quantum group which we shall call ‘approximate linearity with almost commuting intertwiners’. We show that this property is stable under free products, monoidal equivalence, free wreath products and dual quantum subgroups. Examples include in particular all the (higher-dimensional) free orthogonal easy quantum groups.
We then show that a compact quantum group with a quantum Markov semigroup that is approximately linear with almost commuting intertwiners satisfies the immediately gradient-
${\mathcal {S}}_2$
condition from [10] and derive strong solidity results (following [10]). Using the noncommutative Riesz transform we also show that these quantum groups have the Akemann–Ostrand property; in particular, the same strong solidity results follow again (now following [27]).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.