In this paper, we consider the problem of characterizing positive definite functions on compact two-point homogeneous spaces cross locally compact abelian groups. For a locally compact abelian group $G$ with dual group $\widehat{G}$, a compact two-point homogeneous space $\mathbb{H}$ with normalized geodesic distance $\unicode[STIX]{x1D6FF}$ and a profile function $\unicode[STIX]{x1D719}:[-1,1]\times G\rightarrow \mathbb{C}$ satisfying certain continuity and integrability assumptions, we show that the positive definiteness of the kernel $((x,u),(y,v))\in (\mathbb{H}\times G)^{2}\mapsto \unicode[STIX]{x1D719}(\cos \unicode[STIX]{x1D6FF}(x,y),uv^{-1})$ is equivalent to the positive definiteness of the Fourier transformed kernels $(x,y)\in \mathbb{H}^{2}\mapsto \widehat{\unicode[STIX]{x1D719}}_{\cos \unicode[STIX]{x1D6FF}(x,y)}(\unicode[STIX]{x1D6FE})$, $\unicode[STIX]{x1D6FE}\in \widehat{G}$, where $\unicode[STIX]{x1D719}_{t}(u)=\unicode[STIX]{x1D719}(t,u)$, $u\in G$. We also provide some results on the strict positive definiteness of the kernel.