We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Andrei Agrachev, Scuola Internazionale Superiore di Studi Avanzati, Trieste,Davide Barilari, Université de Paris VII (Denis Diderot),Ugo Boscain, Centre National de la Recherche Scientifique (CNRS), Paris
In this chapter we show how to find certain firstintegrals, for Hamiltonian systems on Lie groups,that are automatically in involution with each otherand with the Hamiltonian. This theory will be usedto prove that the Hamiltonian system for normalPontryagin extremals for rank-2 left-invariantsub-Riemannian structures on three-dimensional Liegroups is completely integrable.
It is proved that a symplectic twist map of the cotangent bundle $T^{\ast }\mathbb{T}^{d}$ of the $d$-dimensional torus that is without conjugate points is $C^{0}$-integrable, that is $T^{\ast }\mathbb{T}^{d}$ is foliated by a family of invariant $C^{0}$ Lagrangian graphs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.