BioForms integrates sacrificial formworks, agent-based computational algorithms and biological growth in the generation of biodegradable internal wall panel systems. These wall panel systems are intended to minimize material waste, utilize local botany and generate a symbiosis between the artificially made and the naturally grown. This is achieved by utilizing local waste as a structural compressive core, mycelium as the binder, and recycled pellets as the architectural skin. Leveraging mycelium’s structural, acoustic and thermal properties, this exploration delves into unique methods of incorporating fungi and waste into architectural construction. The motivations for this research stem from the need to address the building industry’s contribution to climate change, by considering the lifecycle of our materials. BioForms aims to retrofit existing buildings by replacing foam insulation and MDF (medium-density fiberboard) wall panels with biodegradable and recyclable 3D-printed skins embedded with a mycelium core. Analysing mycelium’s reaction to BioForms I, the second iteration, BioForms II, evolves in design complexity and materiality. BioForms II explored robotically fabricated wood-based polylactic acid plastic (PLA) composite materials. Within the second iteration of this research stream, mycelia was both embedded within the compressed fabricated skins and on the external surface. Whilst BioForms explored the generation of biodegradable wall panel systems, the broader aims of this research is aimed at infiltrating biological matter into human-occupied spaces, completely omitting the use of synthetic building materials within the construction industry and advancing the architects relationship to nature in the generation of form.