We investigate the impact of misinformation about the contact structure on the ability to predict disease outbreaks. We base our study on 31 empirical temporal networks and tune the frequencies in errors in the node identities or time stamps of contacts. We find that for both these spreading scenarios, the maximal misprediction of both the outbreak size and time to extinction follows an stretched exponential convergence as a function of the error frequency. We furthermore determine the temporal-network structural factors influencing the parameters of this convergence.