We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Increasing digitalization means that many of our daily interactions happen within digital environments where they leave digital footprints in the form of trace data. Such digital trace data is often thought to generate insights by virtue of its immense scale. This focus on ‘big data’ tends to overlook the richness and complex characteristics of digital traces that opens new vistas for a multitude of computational analyses that generate new and high-resolution insights to digital environments. As such, paying attention to the characteristics of trace data allows for deep investigations of social-technical interactions in unprecedented detail.
This chapter describes the process of digital trace analysis through four analytical activities aimed at identifying units of analysis, extracting categories, validating patterns and conceptualizing findings from digital trace data. It then shows how analytical activities can be applied to a given digital trace dataset to derive three ‘facets’ that each provide rich conceptualizations of social interaction with technology. It explains each facet and outlines ways to implement digital trace analyses that focus on facets relating to relations (network analysis), processes (sequence analysis) or semantics (text analysis).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.