We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Simulation and instrumental measurement are the most reliable methods to examine, prove, and enhance adequacy of theoretical models and prototypes and predict their practical use. A trade-off complex of testing and measuring instruments is presented for designing vibration protection systems. This includes both the standard test equipment and add-on devices to recognize specifics in behavior of the systems with negative and quasi-zero stiffness. This covers the computer-aided tensile machines and special adapters for static and low-cycle testing, optical aids for holographic interferometry and structural testing, electro- and/or hydrodynamic exciters, sets of special infra-frequency accelerometers and external filters, AD/DA-boards, FFT- and/or wavelet analyzers, recording equipment, and standard and special software. The complex developed provides a full cycle of the system experiment, including (a) path-generation and optimization of elastic responses, (b) strain state analysis of parametric elements and mechanism units, (c) simulation and online analysis of dynamic behavior of scaled models of the systems with extremely small stiffness and damping under vibrations in a frequency range starting from near-zero values. The method of laboratory experiment is an integral part of the methodology to investigate the systems in the field.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.