We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We propose a stochastic modelling of the PCR amplification process by a size-dependent branching process starting as a supercritical Bienaymé-Galton-Watson transient phase and then having a saturation near-critical size-dependent phase. This model allows us to estimate the probability of replication of a DNA molecule at each cycle of a single PCR trajectory with a very good accuracy.
We consider a single-type supercritical or near-critical size-dependent branching process {Nn}n such that the offspring mean converges to a limit m ≥ 1 with a rate of convergence of order as the population size Nn grows to ∞ and the variance may vary at the rate where −1 ≤ β < 1. The offspring mean m(N) = m + μN-α + o(N-α) depends on an unknown parameter θ0 belonging either to the asymptotic model (θ0 = m) or to the transient model (θ0 = μ). We estimate θ0 on the nonextinction set from the observations {Nh,…,Nn} by using the conditional least-squares method weighted by (where γ ∈ ℝ) in the approximate model mθ,ν̂n(·), where ν̂n is any estimation of the parameter of the nuisance part (O(N-α) if θ0 = m and o(N-α) if θ0 = μ). We study the strong consistency of the estimator of θ0 as γ varies, with either h or n - h remaining constant as n → ∞. We use either a minimum-contrast method or a Taylor approximation of the first derivative of the contrast. The main condition for obtaining strong consistency concerns the asymptotic behavior of the process. We also give the asymptotic distribution of the estimator by using a central-limit theorem for random sums and we show that the best rate of convergence is attained when γ = 1 + β.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.