We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A conic bundle is a contraction
$X\to Z$
between normal varieties of relative dimension
$1$
such that
$-K_X$
is relatively ample. We prove a conjecture of Shokurov that predicts that if
$X\to Z$
is a conic bundle such that X has canonical singularities and Z is
$\mathbb {Q}$
-Gorenstein, then Z is always
$\frac {1}{2}$
-lc, and the multiplicities of the fibres over codimension
$1$
points are bounded from above by
$2$
. Both values
$\frac {1}{2}$
and
$2$
are sharp. This is achieved by solving a more general conjecture of Shokurov on singularities of bases of lc-trivial fibrations of relative dimension
$1$
with canonical singularities.
We show that a standard conic bundle over a minimal rational surface is rational and its Jacobian splits as the direct sum of Jacobians of curves if and only if its derived category admits a semiorthogonal decomposition by exceptional objects and the derived categories of those curves. Moreover, such a decomposition gives the splitting of the intermediate Jacobian also when the surface is not minimal.
We make precise the structure of the first two reduction morphisms associated with codimension two non-singular subvarieties of non-singular quadrics Qn, n ≥ 5. We give a coarse classification of the same class of subvarieties when they are assumed not to be of log-general-type.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.