This short note investigates convergence of adaptive Markov chain Monte Carlo algorithms, i.e. algorithms which modify the Markov chain update probabilities on the fly. We focus on the containment condition introduced Roberts and Rosenthal (2007). We show that if the containment condition is not
satisfied, then the algorithm will perform very poorly. Specifically, with positive probability, the adaptive algorithm will be asymptotically less efficient then any nonadaptive ergodic MCMC algorithm. We call such algorithms AdapFail, and conclude that they should not be used.