We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter covers the analysis of linear and nonlinear continuous-time dynamical systems described by a continuous-time state-space model whose input belongs to an ellipsoid. Similar to the linear discrete-time case, the set containing all possible values that the state can take is not an ellipsoid in general, but it can be upper bounded by a family of ellipsoids whose evolution is governed by a differential equation that can be derived from the system state-space model. As in the discrete-time case, it is possible to choose ellipsoids within this family that are optimal in some sense. The nonlinear case is again handled using linearization. The techniques developed in the chapter are used to analyze the performance of a buck DC-DC power converter. In addition, we show how the techniques can be used to assess the effect of variability associated with renewable-based electricity generation on bulk power system dynamics, with a focus on time-scales involving electromechanical phenomena.
This chapter studies continuous-time dynamical systems described by a continuous-time state-space model whose input is subject to probabilistic uncertainty. The first part of the chapter is devoted to the analysis of linear systems and provides techniques for computing the first and second moments of the state vector when the evolution of the input vector is governed by a "white noise" process with known mean and covariance functions. Then, by additionally imposing this white noise process to be Gaussian, we provide a partial differential equation whose solution yields the pdf of the state vector. The second part of the chapter extends these techniques to the analysis of nonlinear systems, with a special focus on the case when the white noise governing the evolution of the input vector is Gaussian. The third part of the chapter illustrates the application of the techniques developed to the analysis of inertia-less AC microgrids when the measurements utilized by the frequency control system are corrupted by additive disturbances.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.