A Markov decision model is considered for the control of a truncated general immigration process, which represents a pest population, by the introduction of total catastrophes. The optimality criterion is that of minimizing the expected long-run average cost per unit time. Firstly, a necessary and sufficient condition is found under which the policy of never controlling is optimal. If this condition fails, a parametric analysis, in which a fictitious parameter is varied over the entire real line, is used to establish the optimality of a control-limit policy. Furthermore, an efficient Markov decision algorithm operating on the class of control-limit policies is developed for the computation of the optimal policy.