We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we consider an initial-boundary value problem of Hsieh's equation with conservative nonlinearity. The global unique solvability in the framework of Sobolev is established. In particular, one of our main motivations is to investigate the boundary layer (BL) effect and the convergence rates as the diffusion parameter $\beta$ goes zero. It is shown that the BL-thickness is of the order $O(\beta ^{\gamma })$ with $0<\gamma <\frac {1}{2}$. We need to point out that, different from the previous work on nonconservative form of Hsieh's equations, the conservative nonlinearity $(\psi ^{\beta }\theta ^{\beta })_x$ implies that new nonlinear term $\psi _x^{\beta }\theta ^{\beta }$ needs to be handled. It is important that more regularities on the solution to the limit problem are required to obtain the convergence rates and BL-thickness. It is more difficult for initial-boundary problem due to the lack of boundary conditions (especially, higher-order derivatives) prevents us from applying the integration by part to derive the energy estimates directly. Thus it is more complicated than the case of nonconservative form. Consequently more subtle mathematical analysis needs to be introduced to overcome the difficulties.
Motivated by mathematical tissue growth modelling, we consider the problem of approximating the dynamics of multicolor Pólya urn processes that start with large numbers of balls of different colors and run for a long time. Using strong approximation theorems for empirical and quantile processes, we establish Gaussian process approximations for the Pólya urn processes. The approximating processes are sums of a multivariate Brownian motion process and an independent linear drift with a random Gaussian coefficient. The dominating term between the two depends on the ratio of the number of time steps n to the initial number of balls N in the urn. We also establish an upper bound of the form $c(n^{-1/2}+N^{-1/2})$ for the maximum deviation over the class of convex Borel sets of the step-n urn composition distribution from the approximating normal law.
Von Neumann’s original proof of the ergodic theorem is revisited. A uniform convergence rate is established under the assumption that one can control the density of the spectrum of the underlying self-adjoint operator when restricted to suitable subspaces. Explicit rates are obtained when the bound is polynomial, with applications to the linear Schrödinger and wave equations. In particular, decay estimates for time averages of solutions are shown.
In this paper, convergence rates of solutions towards stationary solutions for the outflow problem of planar magnetohydrodynamics (MHD) are investigated. Inspired by the relationship between MHD and Navier-Stokes, we prove that the global solutions of the planar MHD converge to the corresponding stationary solutions of Navier-Stokes equations. We obtain the corresponding convergence rates based on the weighted energy method when the initial perturbation belongs to some weighted Sobolev space.
This paper is concerned with the asymptotic behaviour of solutions to quasilinear hyperbolic equations with nonlinear damping on the quarter-plane (x, t) ∈ ℝ+ x ∈ ℝ+. We obtain the Lp (1 ≤ p ≤ +∞) convergence rates of the solution to the quasilinear hyperbolic equations without the additional technical assumptions for the nonlinear damping f(v) given by Li and Saxton.
Iterative approximation algorithms are successfully applied in parametric approximation tasks. In particular, reduced basis methods make use of the so-called Greedy algorithm for approximating solution sets of parametrized partial differential equations. Recently, a priori convergence rate statements for this algorithm have been given (Buffa et al. 2009, Binev et al. 2010). The goal of the current study is the extension to time-dependent problems, which are typically approximated using the POD–Greedy algorithm (Haasdonk and Ohlberger 2008). In this algorithm, each greedy step is invoking a temporal compression step by performing a proper orthogonal decomposition (POD). Using a suitable coefficient representation of the POD–Greedy algorithm, we show that the existing convergence rate results of the Greedy algorithm can be extended. In particular, exponential or algebraic convergence rates of the Kolmogorov n-widths are maintained by the POD–Greedy algorithm.
We consider approximation of multivariate functions in Sobolev spaces by high order Parzen windows in a non-uniform sampling setting. Sampling points are neither i.i.d. nor regular, but are noised from regular grids by non-uniform shifts of a probability density function. Sample function values at sampling points are drawn according to probability measures with expected values being values of the approximated function. The approximation orders are estimated by means of regularity of the approximated function, the density function, and the order of the Parzen windows, under suitable choices of the scaling parameter.
This paper compares the convergence rate properties of three storage models (dams) driven by time-homogeneous jump process input: the infinitely high dam, the finite dam, and the infinitely deep dam. We show that the convergence rate of the infinitely high dam depends on the moment properties of the input process, the finite dam always approaches its limiting distribution exponentially fast, and the infinitely deep dam approaches its limiting distribution exponentially fast under very general conditions. Our methods make use of rate results for regenerative processes and several sample path orderings.
We consider a migration process whose singleton process is a time-dependent Markov replacement process. For the singleton process, which may be treated as either open or closed, we study the limiting distribution, the distribution of the time to replacement and related quantities. For a replacement process in equilibrium we obtain a version of Little's law and we provide conditions for reversibility. For the resulting linear population process we characterize exponential ergodicity for two types of environmental behaviour, i.e. either convergent or cyclic, and finally for large population sizes a diffusion approximation analysis is provided.
The non-parametric discrete-time estimation of the covariance function R(t) of stationary continuous-time processes is considered. The characteristics of the sampling instants necessary for the consistent estimation of R(t) are explored. A class of covariance estimates is introduced and its asymptotic statistics are derived.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.