We show in a very general framework the a.s. convergence of the one-dimensional Kohonen algorithm–after self-organization–to its unique equilibrium when the learning rate decreases to 0 in a suitable way. The main requirement is a log-concavity assumption on the stimuli distribution which includes all the usual (truncated) probability distributions (uniform, exponential, gamma distribution with parameter ≥ 1, etc.). For the constant step algorithm, the weak convergence of the invariant distributions towards equilibrium as the step goes to 0 is established too. The main ingredients of the proof are the Poincaré-Hopf Theorem and a result of Hirsch on the convergence of cooperative dynamical systems.