The transcriptional mechanisms that govern the development and plasticity of somatopic sensory maps in the cerebral cortex have not been studied extensively. In particular, no studies have addressed the role of epigenetic mechanisms in the development of sensory maps. DNA methylation is one of the main epigenetic mechanisms by which mammalian cells regulate gene transcription. Demethylation results in embryonic lethality, so it has been very difficult to study the role of DNA methylation in brain development. We have used cre-loxP technology to generate forebrain-specific deletion of DNA methyltransferase 1 (Dnmt1), the enzyme required for the maintenance of DNA methylation. We find that DNA hypomethylation of neurons in the cerebral cortex results in the failure of development of somatosensory barrel cortex. We also find that, despite functional thalamocortical neurotransmission, thalamocortical long-term potentiation cannot be induced in slices from Emx1-cre;Dnmt1 mutant mice. These studies emphasize the importance of DNA methylation for the development of sensory maps and indicate that epigenetic mechanisms might play a role in the development of synaptic plasticity.