We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter defines and studies stable categories of additive categories with a focus on the stable categories associated to a given cotorsion pair. It is shown that for any complete cotorsion pair, or even Ext-pair, there are four additive functors between stable categories. First there are the right and left approximation functors, obtained by taking special precovers and preenvelopes. The other two functors constructed are the suspension and loop functors.
This chapter studies cotorsion pairs in exact categories with a view toward developing the theory of abelian model structures. Basic concepts such as special precovers and complete cotorsion pairs are discussed. The more general notion of a complete Ext-pair is also introduced, and lifting and factorization properties for morphisms are developed. Hereditary cotorsion pairs are characterized and the Generalized Horseshoe Lemma is proved for hereditary cotorsion pairs. The special case of projective and injective cotorsion pairs is defined and characterized.
Offering a unique resource for advanced graduate students and researchers, this book treats the fundamentals of Quillen model structures on abelian and exact categories. Building the subject from the ground up using cotorsion pairs, it develops the special properties enjoyed by the homotopy category of such abelian model structures. A central result is that the homotopy category of any abelian model structure is triangulated and characterized by a suitable universal property – it is the triangulated localization with respect to the class of trivial objects. The book also treats derived functors and monoidal model categories from this perspective, showing how to construct tensor triangulated categories from cotorsion pairs. For researchers and graduate students in algebra, topology, representation theory, and category theory, this book offers clear explanations of difficult model category methods that are increasingly being used in contemporary research.
This paper is devoted to the study of generalized tilting theory of functor categories in different levels. First, we extend Miyashita’s proof (Math Z 193:113–146,1986) of the generalized Brenner–Butler theorem to arbitrary functor categories $\mathop{\textrm{Mod}}\nolimits\!(\mathcal{C})$ with $\mathcal{C}$ an annuli variety. Second, a hereditary and complete cotorsion pair generated by a generalized tilting subcategory $\mathcal{T}$ of $\mathop{\textrm{Mod}}\nolimits \!(\mathcal{C})$ is constructed. Some applications of these two results include the equivalence of Grothendieck groups $K_0(\mathcal{C})$ and $K_0(\mathcal{T})$, the existences of a new abelian model structure on the category of complexes $\mathop{\textrm{C}}\nolimits \!(\!\mathop{\textrm{Mod}}\nolimits\!(\mathcal{C}))$, and a t-structure on the derived category $\mathop{\textrm{D}}\nolimits \!(\!\mathop{\textrm{Mod}}\nolimits \!(\mathcal{C}))$.
We study the existence of some covers and envelopes in the chain complex category of R-modules. Let (𝒜,ℬ) be a cotorsion pair in R-Mod and let ℰ𝒜 stand for the class of all exact complexes with each term in 𝒜. We prove that (ℰ𝒜,ℰ𝒜⊥) is a perfect cotorsion pair whenever 𝒜 is closed under pure submodules, cokernels of pure monomorphisms and direct limits and so every complex has an ℰ𝒜-cover. As an application we show that every complex of R-modules over a right coherent ring R has an exact Gorenstein flat cover. In addition, the existence of -covers and -envelopes of special complexes is considered where and denote the classes of all complexes with each term in 𝒜 and ℬ, respectively.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.