We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To investigate the dosimetric advantage of quasi-continuous couch motion-enabled trajectory modulated arc radiotherapy therapy (TMAT) over the coplanar tangential partial arcs volumetric modulated arc radiotherapy (VMAT) for treating left breast and chest wall patients.
Method
Treatment plans of 43 patients who received radiotherapy for left breast (17) or for left chest wall (26) using coplanar partial tangential arcs VMAT (reference plan) were considered for this study. For each patient, in addition to the treatment plan, a TMAT plan was also generated using quasi-continuous couch rotation. The TMAT plan consisted of original two 30° tangential arc beams and two supplementary beams having a couch rotation of ±10°, ±20° and ±30°, respectively. The difference in PTV volume coverage (PTV V95%) between TMAT plan and VMAT plan was calculated for all the cases and normalised to the plan’s prescription dose. Similarly, differences in PTV_V105% and several dose-volume parameters related to organs at risk (OAR) were also computed and tabulated.
Result
TMAT shows an increment in the PTV dose coverage V95% with respect to reference plan by 4·7±2·5% when averaged overall prescription dose levels. Mean PTV dose (averaged overall prescription levels) for reference and TMAT plan was 4638·6±423·8 and 4793·5±447·2 cGy, respectively, and statistically insignificant (p=0·06). However mean PTV_V105% values for TMAT and for reference plans were 6·7±4·8 and 7·2±5·2%, respectively, and were not statistically different (p=0·85). Mean heart dose in TMAT was less than in VMAT plans, but not significantly. As regarding D1% to heart, TMAT plan was again found to be better with a mean difference of 137·1 cGy over VMAT plan. Other parameters evaluated were: mean dose and D1% to contralateral breast, and V20 Gy and V5 Gy for lung.
Conclusion
TMAT plans were found to be better than VMAT plans in terms of PTV coverage and D1% for heart. For evaluated dose parameters apart from PTV coverage and D1% to the heart, no significant differences were observed. Thus, TMAT plans yielded better dose distribution in terms of PTV dose coverage, hot spots and OAR doses.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.