The charge transport properties of anthra-tetrathiophene (ATT) and its brominated and cyanated derivatives (TBATT and TCATT) were investigated by the density functional theory (DFT) coupled with incoherent charge-hopping model. The crystal structure of TCATT is predicted by the dispersion-corrected DFT (DFT-D) method, and those of ATT and TBATT are retrieved from the Cambridge Crystallographic Data Center. The introduction of electron-withdrawing substituents of bromine and cyano decreases the frontier molecular orbital energies but increases the electron affinities, which is beneficial to electron injection and guarantees charge carrier stabilization. The π–π stacking of neighbor molecules with a short distance and large coupling area contributes to the largest transfer integral. The predicted electron mobility of TCATT reaches up to 1.851 cm2/(V·s), indicating that the cyanation of ATT is favorable for improving the electron transport. The angular dependent simulation for electron mobility shows that the electron transport is remarkably anisotropic.