We study an example of a hit-and-run random walk on the symmetric group
$\mathbf S_n$
. Our starting point is the well-understood top-to-random shuffle. In the hit-and-run version, at each single step, after picking the point of insertion j uniformly at random in
$\{1,\ldots,n\}$
, the top card is inserted in the jth position k times in a row, where k is uniform in
$\{0,1,\ldots,j-1\}$
. The question is, does this accelerate mixing significantly or not? We show that, in
$L^2$
and sup-norm, this accelerates mixing at most by a constant factor (independent of n). Analyzing this problem in total variation is an interesting open question. We show that, in general, hit-and-run random walks on finite groups have non-negative spectrum.