We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Edited by
Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany,Fabio Castelli, Università degli Studi, Florence,Dylan Jones, University of Toronto,Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
Abstract: Operational forecasts of volcanic clouds are a key decision-making component for civil protection agencies and aviation authorities during the occurrence of volcanic crises. Quantitative operational forecasts are challenging due to the large uncertainties that typically exist on characterising volcanic emissions in real time. Data assimilation, including source term inversion, has long been recognised by the scientific community as a mechanism to reduce quantitative forecast errors. In terms of research, substantial progress has occurred during the last decade following the recommendations from the ash dispersal forecast workshops organised by the International Union of Geodesy and Geophysics (IUGG) and the World Meteorological Organization (WMO). The meetings held in Geneva in 2010–11 in the aftermath of the 2010 Eyjafjallajökull eruption identified data assimilation as a research priority. This Chapter reviews the scientific progress and its transfer into operations, which is leveraging a new generation of operational forecast products.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.