We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we consider variational approaches to handle the multiplicative noise removal and deblurring problem. Based on rather reasonable physical blurring-noisy assumptions, we derive a new variational model for this issue. After the study of the basic properties, we propose to approximate it by a convex relaxation model which is a balance between the previous non-convex model and a convex model. The relaxed model is solved by an alternating minimization approach. Numerical examples are presented to illustrate the effectiveness and efficiency of the proposed method.
Total variation regularization has good performance in noise removal and edge preservation but lacks in texture restoration. Here we present a texture-preserving strategy to restore images contaminated by blur and noise. According to a texture detection strategy, we apply spatially adaptive fractional order diffusion. A fast algorithm based on the half-quadratic technique is used to minimize the resulting objective function. Numerical results show the effectiveness of our strategy.
This paper deals with two complementary methods in noisy image
deblurring: a nonlinear shrinkage of wavelet-packets coefficients called FCNR
and Rudin-Osher-Fatemi's variational method. The FCNR has for objective to
obtain a restored image with a white noise. It will prove to be very efficient
to restore an image after an invertible blur but limited in the opposite
situation. Whereas the Total Variation based method, with its ability to
reconstruct the lost frequencies by interpolation, is very well adapted to
non-invertible blur, but that it tends to erase low contrast textures. This
complementarity is highlighted when the methods are applied to the restoration
of satellite SPOT images.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.