We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We address the decay and the quantitative uniqueness properties for solutions of the elliptic equation with a gradient term, $$\Delta u=W\cdot \nabla u$$. We prove that there exists a solution in a complement of the unit ball which satisfies $$|u(x)|\le C\exp (-C^{-1}|x|^2)$$ where $$W$$ is a certain function bounded by a constant. Next, we revisit the quantitative uniquenessfor the equation$$-\Delta u= W \cdot \nabla u$$ and provide an example of a solution vanishing at a point with the rate$${\rm const}\Vert W\Vert_{L^\infty}^2$$.We also review decay and vanishing results for the equation $$\Delta u= V u$$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.