Alpha-lactalbumin (α-LA) and β-lactoglobulin (β-LG) are contained in bovine milk whey. Chemical and physical treatments are known to alter the conformation of these proteins and we have previously reported that α-LA denatured with trifluoroethanol (TFE) and isolated from sterilized market milk inhibited the growth of rat crypt IEC-6 cells. In the present study, we aimed to evaluate the effects of TFE-treated α-LA and β-LG on cell growth using cultured intestinal cells and on their safety using a suckling mouse model. First, we investigated the effect of the TFE-treated whey proteins on human colonic Caco-2 cells at various differentiation stages. In the undifferentiated stage, we assessed cell growth by a water-soluble tetrazolium-1 method. The native whey proteins enhanced cell proliferation, whereas the TFE-treated whey proteins strongly inhibited cell growth. We investigated cell barrier function in the post-differentiated stage by measuring transepithelial electrical resistance (TER). Not only native but also the TFE-treated whey proteins increased TER. Next, we evaluated whether the TFE-treated α-LA and β-LG have adverse effects on healthy suckling mice. No mice given by the TFE-treated samples showed any adverse symptoms. We also performed a safety test using a human rotavirus infected gastrointestinal disease suckling mice model. Even the TFE-treated whey proteins appeared to prevent the development of diarrheal symptoms without any adverse effects. Although we cannot know the effect of long-term ingestion of denatured whey proteins, these results suggest that they have no adverse effects on differentiated intestinal cells and digestive tract, at least in short-term ingestion.